GNU/Linux >> Znalost Linux >  >> Linux

Jak zkontrolovat, zda binární soubor vyžaduje SSE4 nebo AVX v systému Linux

Na stejný problém jsem narazil, když jsem se snažil porozumět optimalizačním procesům GCC a zjistit, které instrukce byly nebo nebyly během tohoto procesu použity. Protože nejsem přátelský s enormním množstvím operačních kódů, hledal jsem způsob, jak v rozebraném kódu vizualizovat konkrétní (řekněme SSE3) instrukce, nebo alespoň vytisknout nějaké minimální statistiky, jako zda a kolik těchto instrukcí je. v binárním systému.

Nenašel jsem žádné existující řešení, ale odpověď Jonathana Ben-Avrahama se ukázala jako velmi užitečná, protože poukazuje na skvělý (a dokonce částečně strukturovaný) zdroj operačních kódů. Na základě těchto dat jsem napsal Bash skript, který dokáže vizualizovat konkrétní sady instrukcí nebo o nich tisknout statistiky pomocí grep při napájení s výstupem z objdump .

Seznam operačních kódů byl převeden do samostatného Bash skriptu, který je pak zahrnut (pro účely lepší čitelnosti) v hlavním souboru, který jsem pojmenoval jednoduše opcode . Protože operační kódy jsou v gas.vim (Shirkova vim definice syntaxe, z Jonathanovy odpovědi) byly systematicky seskupeny (zdánlivě) podle různých architektur CPU, snažil jsem se toto rozdělení zachovat a vytvořit architekturu->instrukční sadu mapování; Teď si nejsem jistý, jestli to byl dobrý nápad. Mapování není přesné a dokonce jsem musel udělat nějaké změny v původním gas.vim seskupení. Protože instrukční sady související s architekturou nebyly mým původním záměrem, pokusil jsem se pouze zkonstruovat instrukční sady hlavních architektur popsaných na internetu, ale bez konzultace s dokumentací výrobců. Architektury AMD mi nepřijdou vůbec spolehlivé (kromě instrukčních sad jako 3DNow! a SSE5). Rozhodl jsem se však ponechat kód pro instrukční sady různých architektur zde pro někoho jiného, ​​kdo jej prozkoumá a opraví/vylepší a poskytne ostatním nějaké předběžné výsledky.

Začátek hlavního souboru s názvem opcode :

#!/bin/bash
#
# Searches disassembled code for specific instructions.
#
# Opcodes obtained from: https://github.com/Shirk/vim-gas/blob/master/syntax/gas.vim
#
# List of opcodes has been obtained using the following commands and making a few modifications:
#   echo '#!/bin/bash' > Opcode_list
#   wget -q -O- https://raw.githubusercontent.com/Shirk/vim-gas/master/syntax/gas.vim \
#    | grep -B1 -E 'syn keyword gasOpcode_|syn match   gasOpcode' | \
#    sed -e '/^--$/d' -e 's/"-- Section:/\n#/g' \
#    -e 's/syn keyword gasOpcode_\([^\t]*\)*\(\t\)*\(.*\)/Opcode_\1="\${Opcode_\1} \3"/g' \
#    -e 's/Opcode_PENT_3DNOW/Opcode_ATHLON_3DNOW/g' -e 's/\\//g' \
#    -e 's/syn match   gasOpcode_\([^\t]*\)*.*\/<\(.*\)>\//Opcode_\1="\${Opcode_\1} \2"/g' \
#    >> Opcode_list
#
# Modify file Opcode_list replacing all occurrences of:
#   * Opcode_Base within the section "Tejas New Instructions (SSSE3)" with Opcode_SSSE3
#   * Opcode_Base within the section "Willamette MMX instructions (SSE2 SIMD Integer Instructions)"
#                                        with Opcode_WILLAMETTE_Base

# return values
EXIT_FOUND=0
EXIT_NOT_FOUND=1
EXIT_USAGE=2

# settings
InstSet_Base=""
Recursive=false
Count_Matching=false
Leading_Separator='\s'
Trailing_Separator='(\s|$)' # $ matches end of line for non-parametric instructions like nop
Case_Insensitive=false
Invert=false
Verbose=false
Stop_After=0
Line_Numbers=false
Leading_Context=0
Trailing_Context=0

source Opcode_list   # include opcodes from a separate file

# GAS-specific opcodes (unofficial names) belonging to the x64 instruction set.
# They are generated by GNU tools (e.g. GDB, objdump) and specify a variant of ordinal opcodes like NOP and MOV.
# If you do not want these opcodes to be recognized by this script, comment out the following line.
Opcode_X64_GAS="nopw nopl movabs"


# instruction sets
InstSet_X86="8086_Base 186_Base 286_Base 386_Base 486_Base PENT_Base P6_Base KATMAI_Base WILLAMETTE_Base PENTM_Base"
InstSet_IA64="IA64_Base"
InstSet_X64="PRESCOTT_Base X64_Base X86_64_Base NEHALEM_Base X64_GAS"
InstSet_MMX="PENT_MMX KATMAI_MMX X64_MMX"
InstSet_MMX2="KATMAI_MMX2"
InstSet_3DNOW="ATHLON_3DNOW"
InstSet_SSE="KATMAI_SSE P6_SSE X64_SSE"
InstSet_SSE2="SSE2 X64_SSE2"
InstSet_SSE3="PRESCOTT_SSE3"
InstSet_SSSE3="SSSE3"
InstSet_VMX="VMX X64_VMX"
InstSet_SSE4_1="SSE41 X64_SSE41"
InstSet_SSE4_2="SSE42 X64_SSE42"
InstSet_SSE4A="AMD_SSE4A"
InstSet_SSE5="AMD_SSE5"
InstSet_FMA="FUTURE_FMA"
InstSet_AVX="SANDYBRIDGE_AVX"

InstSetDep_X64="X86"
InstSetDep_MMX2="MMX"
InstSetDep_SSE2="SSE"
InstSetDep_SSE3="SSE2"
InstSetDep_SSSE3="SSE3"
InstSetDep_SSE4_1="SSSE3"
InstSetDep_SSE4_2="SSE4_1"
InstSetDep_SSE4A="SSE3"
InstSetDep_SSE5="FMA AVX" # FIXME not reliable

InstSetList="X86 IA64 X64 MMX MMX2 3DNOW SSE SSE2 SSE3 SSSE3 VMX SSE4_1 SSE4_2 SSE4A SSE5 FMA AVX"


# architectures
Arch_8086="8086_Base"
Arch_186="186_Base"
Arch_286="286_Base"
Arch_386="386_Base"
Arch_486="486_Base"
Arch_Pentium="PENT_Base PENT_MMX" # Pentium = P5 architecture
Arch_Athlon="ATHLON_3DNOW"
Arch_Deschutes="P6_Base P6_SSE" # Pentium II
Arch_Katmai="KATMAI_Base KATMAI_MMX KATMAI_MMX2 KATMAI_SSE" # Pentium III
Arch_Willamette="WILLAMETTE_Base SSE2" # original Pentium IV (x86)
Arch_PentiumM="PENTM_Base"
Arch_Prescott="PRESCOTT_Base X64_Base X86_64_Base X64_SSE2 PRESCOTT_SSE3 VMX X64_VMX X64_GAS" # later Pentium IV (x64) with SSE3 (Willamette only implemented SSE2 instructions) and VT (VT-x, aka VMX)
Arch_P6=""
Arch_Barcelona="ATHLON_3DNOW AMD_SSE4A"
Arch_IA64="IA64_Base" # 64-bit Itanium RISC processor; incompatible with x64 architecture
Arch_Penryn="SSSE3 SSE41 X64_SSE41" # later (45nm) Core 2 with SSE4.1
Arch_Nehalem="NEHALEM_Base SSE42 X64_SSE42" # Core i#
Arch_SandyBridge="SANDYBRIDGE_AVX"
Arch_Haswell="FUTURE_FMA"
Arch_Bulldozer="AMD_SSE5"

ArchDep_8086=""
ArchDep_186="8086"
ArchDep_286="186"
ArchDep_386="286"
ArchDep_486="386"
ArchDep_Pentium="486"
ArchDep_Athlon="Pentium" # FIXME not reliable
ArchDep_Deschutes="Pentium"
ArchDep_Katmai="Deschutes"
ArchDep_Willamette="Katmai"
ArchDep_PentiumM="Willamette" # FIXME Pentium M is a Pentium III modification (with SSE2). Does it support also WILLAMETTE_Base instructions?
ArchDep_Prescott="Willamette"
ArchDep_P6="Prescott" # P6 started with Pentium Pro; FIXME Pentium Pro did not support MMX instructions (introduced again in Pentium II aka Deschutes)
ArchDep_Barcelona="Prescott" # FIXME not reliable
ArchDep_IA64=""
ArchDep_Penryn="P6"
ArchDep_Nehalem="Penryn"
ArchDep_SandyBridge="Nehalem"
ArchDep_Haswell="SandyBridge"
ArchDep_Bulldozer="Haswell" # FIXME not reliable

ArchList="8086 186 286 386 486 Pentium Athlon Deschutes Katmai Willamette PentiumM Prescott P6 Barcelona IA64 Penryn Nehalem SandyBridge Haswell Bulldozer"

Příklad Opcode_list soubor vygenerovaný a upravený podle pokynů v opcode k 27. říjnu 2014 naleznete na http://pastebin.com/yx4rCxqs. Tento soubor můžete vložit přímo do opcode místo source Opcode_list čára. Tento kód jsem zveřejnil, protože Stack Exchange mi nedovolil poslat tak velkou odpověď.

Nakonec zbytek opcode soubor se skutečnou logikou:

usage() {
    echo "Usage: $0 OPTIONS"
    echo ""
    echo "  -r      set instruction sets recursively according to dependency tree (must precede -a or -s)"
    echo "  -a      set architecture"
    echo "  -s      set instruction set"
    echo "  -L      show list of available architectures"
    echo "  -l      show list of available instruction sets"
    echo "  -i      show base instruction sets of current instruction set (requires -a and/or -s)"
    echo "  -I      show instructions in current instruction set (requires -a and/or -s)"
    echo "  -c      print number of matching instructions instead of normal output"
    echo "  -f      find instruction set of the following instruction (regex allowed)"
    echo "  -d      set leading opcode separator (default '$Leading_Separator')"
    echo "  -D      set trailing opcode separator (default '$Trailing_Separator')"
    echo "  -C      case-insensitive"
    echo "  -v      invert the sense of matching"
    echo "  -V      print all lines, not just the highlighted"
    echo "  -m      stop searching after n matched instructions"
    echo "  -n      print line numbers within the original input"
    echo "  -B      print n instructions of leading context"
    echo "  -A      print n instructions of trailing context"
    echo "  -h      print this help"
    echo
    echo "Multiple architectures and instruction sets can be used."
    echo
    echo "Typical usage is:"
    echo "  objdump -M intel -d FILE | $0 OPTIONS"
    echo "  objdump -M intel -d FILE | $0 -s SSE2 -s SSE3 -V                    Highlight SSE2 and SSE3 within FILE."
    echo "  objdump -M intel -d FILE | tail -n +8 | $0 -r -a Haswell -v -m 1    Find first unknown instruction."
    echo "  $0 -C -f ADDSD                                                      Find which instruction set an opcode belongs to."
    echo "  $0 -f .*fma.*                                                       Find all matching instructions and their instruction sets."
    echo
    echo "The script uses Intel opcode syntax. When used in conjunction with objdump, \`-M intel' must be set in order to prevent opcode translation using AT&T syntax."
    echo
    echo "BE AWARE THAT THE LIST OF KNOWN INSTRUCTIONS OR INSTRUCTIONS SUPPORTED BY PARTICULAR ARCHITECTURES (ESPECIALLY AMD'S) IS ONLY TENTATIVE AND MAY CONTAIN MISTAKES!"
    kill -TRAP $TOP_PID
}

list_contains() {   # Returns 0 if $2 is in array $1, 1 otherwise.
    local e
    for e in $1; do
        [ "$e" = "$2" ] && return 0
    done
    return 1
}

build_instruction_set() {   # $1 = enum { Arch, InstSet }, $2 = architecture or instruction set as obtained using -L or -l, $3 = "architecture"/"instruction set" to be used in error message
    local e
    list_contains "`eval echo \\\$${1}List`" "$2" || (echo "$2 is not a valid $3."; usage)      # Test if the architecture/instruction set is valid.
    if [ -n "`eval echo \\\$${1}_${2}`" ]; then                                                 # Add the instruction set(s) if any.
        for e in `eval echo \\\$${1}_${2}`; do                                                  # Skip duplicates.
            list_contains "$InstSet_Base" $e || InstSet_Base="$e $InstSet_Base"
        done
    fi
    if [ $Recursive = true ]; then
        for a in `eval echo \\\$${1}Dep_$2`; do
            build_instruction_set $1 $a "$3"
        done
    fi
    InstSet_Base="`echo $InstSet_Base | sed 's/$ *//'`"                                         # Remove trailing space.
}

trap "exit $EXIT_USAGE" TRAP    # Allow usage() function to abort script execution.
export TOP_PID=$$               # PID of executing process.

# Parse command line arguments.
while getopts ":ra:s:LliIcf:Fd:D:CvVm:nB:A:h" o; do
    case $o in
        r) Recursive=true ;;
        a) build_instruction_set Arch "$OPTARG" "architecture" ;;
        s) build_instruction_set InstSet "$OPTARG" "instruction set" ;;
        L) echo $ArchList; exit $EXIT_USAGE ;;
        l) echo $InstSetList; exit $EXIT_USAGE ;;
        i)
            if [ -n "$InstSet_Base" ]; then
                echo $InstSet_Base
                exit $EXIT_USAGE
            else
                echo -e "No instruction set or architecture set.\n"
                usage
            fi
            ;;
        I)
            if [ -n "$InstSet_Base" ]; then
                for s in $InstSet_Base; do
                    echo -ne "\e[31;1m$s:\e[0m "
                    eval echo "\$Opcode_$s"
                done
                exit $EXIT_USAGE
            else
                echo -e "No instruction set or architecture set.\n"
                usage
            fi
            ;;
        c) Count_Matching=true ;;
        f)
            # Unlike architectures, instruction sets are disjoint.
            Found=false
            for s in $InstSetList; do
                for b in `eval echo \\\$InstSet_$s`; do
                    Found_In_Base=false
                    for i in `eval echo \\\$Opcode_$b`; do
                        if [[ "$i" =~ ^$OPTARG$ ]]; then
                            $Found_In_Base || echo -ne "Instruction set \e[33;1m$s\e[0m (base instruction set \e[32;1m$b\e[0m):"
                            echo -ne " \e[31;1m$i\e[0m"
                            Found_In_Base=true
                            Found=true
                        fi
                    done
                    $Found_In_Base && echo ""
                done
            done
            if [ $Found = false ]; then
                echo -e "Operation code \e[31;1m$OPTARG\e[0m has not been found in the database of known instructions." \
                "Perhaps it is translated using other than Intel syntax. If obtained from objdump, check if the \`-M intel' flag is set." \
                "Be aware that the search is case sensitive by default (you may use the -C flag, otherwise only lower case opcodes are accepted)."
                exit $EXIT_NOT_FOUND
            else
                exit $EXIT_FOUND
            fi
            ;;
        d) Leading_Separator="$OPTARG" ;;
        D) Trailing_Separator="$OPTARG" ;;
        C) Case_Insensitive=true ;;
        v) Invert=true ;;
        V) Verbose=true ;;
        m) Stop_After=$OPTARG ;;
        n) Line_Numbers=true ;;
        B) Leading_Context=$OPTARG ;;
        A) Trailing_Context=$OPTARG ;;
        h) usage ;;
        \?)
            echo -e "Unknown option: -$OPTARG\n"
            usage
            ;;
    esac
done
shift $((OPTIND-1))
[ -n "$1" ] && echo -e "Unknown command line parameter: $1\n" && usage
[ -z "$InstSet_Base" ] && usage

# Create list of grep parameters.
Grep_Params="--color=auto -B $Leading_Context -A $Trailing_Context"
[ $Count_Matching = true ] && Grep_Params="$Grep_Params -c"
[ $Case_Insensitive = true ] && Grep_Params="$Grep_Params -i"
[ $Invert = true ] && Grep_Params="$Grep_Params -v"
[ $Stop_After -gt 0 ] && Grep_Params="$Grep_Params -m $Stop_After"
[ $Line_Numbers = true ] && Grep_Params="$Grep_Params -n"

# Build regular expression for use in grep.
RegEx=""
for s in $InstSet_Base; do
    eval RegEx=\"$RegEx \$Opcode_$s\"
done
# Add leading and trailing opcode separators to prevent false positives.
RegEx="$Leading_Separator`echo $RegEx | sed "s/ /$(echo "$Trailing_Separator"|sed 's/[\/&]/\\\&/g')|$(echo "$Leading_Separator"|sed 's/[\/&]/\\\&/g')/g"`$Trailing_Separator"

[ $Verbose = true -a $Count_Matching = false ] && RegEx="$RegEx|\$"

# The actual search.
grep $Grep_Params -E "$RegEx" && exit $EXIT_FOUND || exit $EXIT_NOT_FOUND

Uvědomte si prosím, že pokud je váš vyhledávací dotaz příliš velký (např. s instrukční sadou Haswell a -r switch - to zahrnuje stovky instrukcí), může výpočet probíhat pomalu a trvat dlouho na velkých vstupech, pro které tento jednoduchý skript nebyl určen.

Podrobné informace o použití naleznete v

./opcode -h

Celých opcode skript (včetně seznamu Opcode_list) lze nalézt na http://pastebin.com/A8bAuHAP.

Neváhejte nástroj vylepšit a opravit všechny chyby, kterých jsem se mohl dopustit. Nakonec bych rád poděkoval Jonathanu Ben-Avrahamovi za jeho skvělý nápad používat Shirk's gas.vim soubor.

UPRAVIT: Skript je nyní schopen najít, do které instrukční sady patří operační kód (lze použít regulární výraz).


Spustil jsem program v Rustu, který se o to pokouší. Myslím, že to funguje, i když je to bez dokumentů a strašně křehké:

https://github.com/pkgw/elfx86exts

Příklad použití:

$ cd elfx86exts
$ cargo build
[things happen]
$ cargo run -- /bin/ls
   Compiling elfx86exts v0.1.0 (file:///home/peter/sw/elfx86exts)
    Finished dev [unoptimized + debuginfo] target(s) in 1.9 secs
     Running `target/debug/elfx86exts /bin/ls`
MODE64
CMOV
SSE2
SSE1

Nejprve dekompilujte svůj binární soubor:

objdump -d binary > binary.asm

Poté najděte vše Pokyny SSE4 v souboru sestavení:

awk '/[ \t](mpsadbw|phminposuw|pmulld|pmuldq|dpps|dppd|blendps|blendpd|blendvps|blendvpd|pblendvb|pblenddw|pminsb|pmaxsb|pminuw|pmaxuw|pminud|pmaxud|pminsd|pmaxsd|roundps|roundss|roundpd|roundsd|insertps|pinsrb|pinsrd|pinsrq|extractps|pextrb|pextrd|pextrw|pextrq|pmovsxbw|pmovzxbw|pmovsxbd|pmovzxbd|pmovsxbq|pmovzxbq|pmovsxwd|pmovzxwd|pmovsxwq|pmovzxwq|pmovsxdq|pmovzxdq|ptest|pcmpeqq|pcmpgtq|packusdw|pcmpestri|pcmpestrm|pcmpistri|pcmpistrm|crc32|popcnt|movntdqa|extrq|insertq|movntsd|movntss|lzcnt)[ \t]/' binary.asm

(Poznámka:CRC32 se může shodovat s komentáři.)

Najděte nejběžnější instrukce AVX (včetně skalárních, včetně AVX2, AVX-512 rodiny a některých FMA jako vfmadd132pd ):

awk '/[ \t](vmovapd|vmulpd|vaddpd|vsubpd|vfmadd213pd|vfmadd231pd|vfmadd132pd|vmulsd|vaddsd|vmosd|vsubsd|vbroadcastss|vbroadcastsd|vblendpd|vshufpd|vroundpd|vroundsd|vxorpd|vfnmadd231pd|vfnmadd213pd|vfnmadd132pd|vandpd|vmaxpd|vmovmskpd|vcmppd|vpaddd|vbroadcastf128|vinsertf128|vextractf128|vfmsub231pd|vfmsub132pd|vfmsub213pd|vmaskmovps|vmaskmovpd|vpermilps|vpermilpd|vperm2f128|vzeroall|vzeroupper|vpbroadcastb|vpbroadcastw|vpbroadcastd|vpbroadcastq|vbroadcasti128|vinserti128|vextracti128|vpminud|vpmuludq|vgatherdpd|vgatherqpd|vgatherdps|vgatherqps|vpgatherdd|vpgatherdq|vpgatherqd|vpgatherqq|vpmaskmovd|vpmaskmovq|vpermps|vpermd|vpermpd|vpermq|vperm2i128|vpblendd|vpsllvd|vpsllvq|vpsrlvd|vpsrlvq|vpsravd|vblendmpd|vblendmps|vpblendmd|vpblendmq|vpblendmb|vpblendmw|vpcmpd|vpcmpud|vpcmpq|vpcmpuq|vpcmpb|vpcmpub|vpcmpw|vpcmpuw|vptestmd|vptestmq|vptestnmd|vptestnmq|vptestmb|vptestmw|vptestnmb|vptestnmw|vcompresspd|vcompressps|vpcompressd|vpcompressq|vexpandpd|vexpandps|vpexpandd|vpexpandq|vpermb|vpermw|vpermt2b|vpermt2w|vpermi2pd|vpermi2ps|vpermi2d|vpermi2q|vpermi2b|vpermi2w|vpermt2ps|vpermt2pd|vpermt2d|vpermt2q|vshuff32x4|vshuff64x2|vshuffi32x4|vshuffi64x2|vpmultishiftqb|vpternlogd|vpternlogq|vpmovqd|vpmovsqd|vpmovusqd|vpmovqw|vpmovsqw|vpmovusqw|vpmovqb|vpmovsqb|vpmovusqb|vpmovdw|vpmovsdw|vpmovusdw|vpmovdb|vpmovsdb|vpmovusdb|vpmovwb|vpmovswb|vpmovuswb|vcvtps2udq|vcvtpd2udq|vcvttps2udq|vcvttpd2udq|vcvtss2usi|vcvtsd2usi|vcvttss2usi|vcvttsd2usi|vcvtps2qq|vcvtpd2qq|vcvtps2uqq|vcvtpd2uqq|vcvttps2qq|vcvttpd2qq|vcvttps2uqq|vcvttpd2uqq|vcvtudq2ps|vcvtudq2pd|vcvtusi2ps|vcvtusi2pd|vcvtusi2sd|vcvtusi2ss|vcvtuqq2ps|vcvtuqq2pd|vcvtqq2pd|vcvtqq2ps|vgetexppd|vgetexpps|vgetexpsd|vgetexpss|vgetmantpd|vgetmantps|vgetmantsd|vgetmantss|vfixupimmpd|vfixupimmps|vfixupimmsd|vfixupimmss|vrcp14pd|vrcp14ps|vrcp14sd|vrcp14ss|vrndscaleps|vrndscalepd|vrndscaless|vrndscalesd|vrsqrt14pd|vrsqrt14ps|vrsqrt14sd|vrsqrt14ss|vscalefps|vscalefpd|vscalefss|vscalefsd|valignd|valignq|vdbpsadbw|vpabsq|vpmaxsq|vpmaxuq|vpminsq|vpminuq|vprold|vprolvd|vprolq|vprolvq|vprord|vprorvd|vprorq|vprorvq|vpscatterdd|vpscatterdq|vpscatterqd|vpscatterqq|vscatterdps|vscatterdpd|vscatterqps|vscatterqpd|vpconflictd|vpconflictq|vplzcntd|vplzcntq|vpbroadcastmb2q|vpbroadcastmw2d|vexp2pd|vexp2ps|vrcp28pd|vrcp28ps|vrcp28sd|vrcp28ss|vrsqrt28pd|vrsqrt28ps|vrsqrt28sd|vrsqrt28ss|vgatherpf0dps|vgatherpf0qps|vgatherpf0dpd|vgatherpf0qpd|vgatherpf1dps|vgatherpf1qps|vgatherpf1dpd|vgatherpf1qpd|vscatterpf0dps|vscatterpf0qps|vscatterpf0dpd|vscatterpf0qpd|vscatterpf1dps|vscatterpf1qps|vscatterpf1dpd|vscatterpf1qpd|vfpclassps|vfpclasspd|vfpclassss|vfpclasssd|vrangeps|vrangepd|vrangess|vrangesd|vreduceps|vreducepd|vreducess|vreducesd|vpmovm2d|vpmovm2q|vpmovm2b|vpmovm2w|vpmovd2m|vpmovq2m|vpmovb2m|vpmovw2m|vpmullq|vpmadd52luq|vpmadd52huq|v4fmaddps|v4fmaddss|v4fnmaddps|v4fnmaddss|vp4dpwssd|vp4dpwssds|vpdpbusd|vpdpbusds|vpdpwssd|vpdpwssds|vpcompressb|vpcompressw|vpexpandb|vpexpandw|vpshld|vpshldv|vpshrd|vpshrdv|vpopcntd|vpopcntq|vpopcntb|vpopcntw|vpshufbitqmb|gf2p8affineinvqb|gf2p8affineqb|gf2p8mulb|vpclmulqdq|vaesdec|vaesdeclast|vaesenc|vaesenclast)[ \t]/' binary.asm

POZNÁMKA:testováno s gawk a nawk .


Linux
  1. Jak zkontrolovat verzi Redhat

  2. Jak zkontrolovat časové pásmo v Linuxu

  3. Jak zkontrolovat, zda je systém Linux 32bitový nebo 64bitový

  1. Jak zkontrolovat dostupnost systému v Linuxu

  2. Jak zkontrolovat verzi jádra v Linuxu

  3. Jak zkontrolovat historii přihlášení k systému Linux

  1. Jak zkontrolovat místo na disku v Linuxu

  2. Jak zkontrolovat verzi Kali Linuxu

  3. Jak zkontrolovat heslo v Linuxu?